South East Asian J. of Mathematics and Mathematical Sciences Vol. 16, No. 3 (2020), pp. 119-126

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

ON NORMALISATION OF HALF-INTEGRAL WEIGHT MODULAR FORMS

M. Manickam and M. K. Tamil Selvi*

Kerala School of Mathematics, Kunnamangalam, Kozhikode - 673571, Kerala, INDIA

E-mail: murugumanick@gmail.com

*University of Madras, Alpha College of Engineering, Thirumazhisai, Chennai - 600124, INDIA

E-mail: tamilselviphd.mk@gmail.com

(Received: Jul. 15, 2020 Accepted: Oct. 30, 2020 Published: Dec. 30, 2020)

Abstract: In this paper, we derive the algebraic nature of the Fourier coefficients of the Hecke eigenform f of weight k + 1/2 for $\Gamma_0(4N)$, where $k \geq 2$ and N is an odd and square-free integer.

Keywords and Phrases: Modular forms, Hecke eigenforms, Operators.

2010 Mathematics Subject Classification: Primary 11F11, 11F50; Secondary 11F37.

1. Introduction

Let $k \geq 2$ be an integer. Let N be an odd and square - free integer. Let f be a cusp form in Kohnen plus space of weight k + 1/2 for $\Gamma_0(4N)$ as defined in [3], [4] so that $a_f(n) = 0$ whenever, $(-1)^k n \equiv 2$, 3 $(mod\ 4)$. Let F be a cusp form and a normalized newform of weight 2k, level N. Then it is known that the Fourier coefficients $a_f(n)$ can be taken as real and algebraic numbers whenever f is an Hecke eigenform which corresponds to F via Shimura - Kohnen lifts. In this note, we present a proof of this fact and also derive the same fact for a Hecke eigenform f which is in the old classes under the assumption that f is an eigenform under all

the w - operators w_p (see the definition in [4]) for various prime p dividing N and the Hecke operators T_{n^2} , (n, N) = 1.

2. Notations

Throughout this paper, the letters k, m, M, N stand for natural numbers and 2|k. $(k>1, m\equiv 1(mod\,4)$ is a square-free odd integer). Let N be a square-free integer, (m,N)=1. Let τ be an element of \mathbb{H} , the complex upper half-plane. Let \mathbb{C} and \mathbb{Z} respectively denote the complex plane and the ring of integers.

For a complex number z, we write \sqrt{z} for the square root with argument in $(-\pi, \pi]$ and we set $z^{a/2} = (\sqrt{z})^a$ for any $a \in \mathbb{Z}$.

For integers a, b, let $\left(\frac{a}{b}\right)$ denote the generalized quadratic residue symbol. Let d(c) denote $d(mod\ c),\ c,d\in\mathbb{Z}$.

The space of modular forms of weight 2k and level N is denoted as $M_{2k}(N)$ and its sub space of all the cusp forms by $S_{2k}(N)$. For cusp forms f, g in the space $S_{2k}(N)$, we denote their Petersson scalar product by f, g > 0.

We write the Fourier expansion of a modular form f as

$$f(\tau) = \sum_{n>0} a_f(n)e^{2\pi i n\tau}.$$

For the details of modular forms of weight 2k level N, we refer to [8].

3. Definitions

Definition 3.1. Modular forms of half-integral weight [2]

Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\gamma z = \frac{az+b}{cz+d}$. In the transformation rule $f(\gamma z) = (cz+d)^k f(z)$ the term $(cz+d)^k$ is called the automorphy factor. It depends on γ and on z. It is denoted as $J(\gamma,z)$ for a non-zero function f and has the property that $f(\gamma z) = J(\gamma,z)f(z)$ for $z \in \mathbb{H}$ and γ in some matrix group.

Let G denote the four-sheeted covering of $GL_2^+(\mathbb{Q})$ defined as the set of all ordered pairs $(\alpha, \phi(\tau))$, where $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2^+(\mathbb{Q})$ and $\phi(z)$ is a holomorphic function on \mathbb{H} such that $\phi^2(z) = t \frac{cz+d}{\sqrt{det\alpha}}$ for some t with t = 1, -1, i, -i. Then G is a group with the following multiplication rule.

$$(\alpha, \phi(z))(\beta, \psi(z)) = (\alpha\beta, \phi(\beta z)\psi(z)).$$

For a complex valued function f defined on the upper half-plane \mathbb{H} and an element $(\alpha, \phi(z)) \in G$, define the stroke operator by

$$f|_{k+1/2}(\alpha,\phi(z))(z) = \phi(z)^{-2k-1}f(\alpha z).$$

If $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4)$, we always let $j(\alpha, z) = \begin{pmatrix} \underline{c} \\ \underline{d} \end{pmatrix} \begin{pmatrix} -4 \\ \underline{d} \end{pmatrix}^{-1/2} (cz + d)^{1/2}$ so that $(\alpha, j(\alpha, z)) \in \mathbb{G}$.

Definition 3.2. Hecke operators for half-integral weight

For n a positive integer and $f \in M_k(\Gamma)$ (Γ is a congruence subgroup of $\Gamma_0(4)$) we can define $f|T_n$ as follows. Let Δ^n be the set of all 2×2 matrices with integer entries and determinant n. For any double coset $\Gamma \alpha \Gamma \subset \Delta^n$, where $\alpha \in \Delta^n$, we define $f|[\Gamma \alpha \Gamma]_k = \sum f|[\alpha \gamma_j]_k$, where the sum is over all right cosets $\Gamma \alpha \gamma_j \subset \Gamma \alpha \Gamma$; equivalently, γ_j runs through a complete set of right coset representatives of Γ modulo $\alpha^{-1}\Gamma \alpha \cap \Gamma$. Then

$$f|T_n \stackrel{def}{=} n^{(k/2)-1} \sum f|[\Gamma \alpha \Gamma]_k,$$

where the sum is over all double cosets of Γ in Δ^n .

A modular form $f(z) \in M_k(\Gamma)$ is called a Hecke eigenform if for every positive integer m there exists $\lambda_m \in \mathbb{C}$ with $T_m(f) = \lambda_m(f)$.

Definition 3.3. Let $S_{k+1/2}(4N)$ denote the space of cusp forms of weight k+1/2 for $\Gamma_0(4N)$. It contains all the holomorphic functions on \mathbb{H} with complex values and the functions are holomorphic at all the rational points and each of them satisfies the transformation law: $f|(A, j(A, \tau)) = f$ for all $A \in \Gamma_0(4N)$.

Let $S_{k+1/2}^+(4N)$ denote the Kohnen plus space in $S_{k+1/2}(4N)$ and let $S_{k+1/2}^{+,new}(4N)$ the space of newforms in the plus space. For this we refer to [5].

Let T_n denote the Hecke operator on the space $S_{2k}(N)$ and $T_{n^2}, (n, N) = 1$ denote the Hecke operator on the space $S_{k+1/2}^+(4N)$. For a prime p, we denote the Hecke operators by T_{p^2} when (p, N) = 1 and by U_{p^2} when p|N on $S_{k+1/2}^{+,new}(4N)$. Let $f \in S_{2k}^+(4N)$ be a Hecke eigenform equivalent to a normalised newform $F \in S_{2k}^{new}(N)$ with

$$f|T_{p^2} = a_F(p)f, (p \nmid N)$$

For $f \in S_k(N)$, we define U_p as

$$f|U_p = p^{k/2-3/4} \sum_{\nu \pmod{p}} f \left| \begin{pmatrix} 1 & \nu \\ 0 & p \end{pmatrix}, p^{k/2+1/4} \right|$$

and if p|N, there exists $\lambda_p \in \mathbb{C}$ with $\lambda_{p^2} = 1$ and we have,

$$f|U_{p^2} = -p^{k-1}\lambda_p f$$

In the following Lemma 4.1, we find the value of the constant λ_p explicitly.

Definition 3.4. Waldspurger formula (see [5]) If f, F are the Hecke eigenforms as above, (D, N) = 1 with $(-1)^k D > 0$ is a fundamental discriminant, then we have

$$\frac{a_f(|D|)^2}{\langle f, f \rangle} = \frac{2^{\nu_N}(k-1)!}{\pi^k} |D|^{k-1/2} \frac{L(F, D, k)}{\langle F, F \rangle}$$

where ν_N denotes the number of distinct prime divisors of N.

Definition 3.5. For each prime divisor p of N we put

$$w_p = p^{-k/2 + 1/4} U_p W_p$$

where W_p is the W- operator on $S_{k+1/2}(4M)$; M|N we define

$$W_p = \left(\begin{pmatrix} pa & b \\ 4Mc & p \end{pmatrix}, p^{-1/4} (4Mc\tau + p)^{1/2} \right)$$

where a, b, c are integers such that $b \equiv 1 \pmod{p}$ and $p^2a - 4Mpc = p$. The definition given here is same as defined by Kohnen in [4], but slightly differs by a constant α with $\alpha^2 = 1$.

4. Properties of w_p operators (refer [6])

- $f|T_{p^2} = f|U_{p^2} + p^{k-1}f|w_p, (p \nmid N)$
- For p|N, the W- operator w_p acts as the identity operator on $S_{k+1/2}^+(4N)$.
- The space $S_{k+1/2}^{+,new}(4N)$ has a basis of eigenforms with respect to the Hecke operators T_{p^2} , $p \nmid N$, or U_{p^2} , p|N. Further, these are eigenforms with respect to the W- operators w_p , p|N.

Lemma 4.1. If f is a newform in $S_{k+1/2}^+(4N)$, then for a prime p, $f|w_p = -\left(\frac{D}{p}\right)p^{k-1}f$, where $(-1)^kD > 0$ is a fundamental discriminant, (D,N) = 1 and $a_f(|D|) \neq 0$.

Proof. For the proof we use equation (9) of [4].

$$f|w_p = f \left| \left(p^{-\frac{k}{2} + \frac{1}{4}} U_p W_p \right) \right|$$

$$= p^{-1/2} \left(\frac{-4}{p} \right)^{k+1/2} \sum_{\alpha(p^*)} f \left| \left(\left(\begin{array}{cc} p & \alpha \\ 0 & p \end{array} \right) \left(\frac{-\alpha}{p} \right) \right) + p^{-1/2} f \left| \left(\left(\begin{array}{cc} 1 & v_0 \\ 0 & p \end{array} \right), p^{1/4} \right) W_p.$$

Thus,

$$f|w_p = \sum_{n>1} \left(\frac{(-1)^k n}{p} \right) a_f(n) q^n + p^{-1/2} f \left| \left(\begin{pmatrix} 1 & v_0 \\ 0 & p \end{pmatrix}, p^{1/4} \right) W_p \right|$$

where v_0 is an integer with $a + 4\frac{M}{p}v_0c \equiv 0 \pmod{p}$ Now,

$$\left(\left(\begin{array}{cc} 1 & v_0 \\ 0 & p \end{array} \right), p^{1/4} \right) W_p = \left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left(\frac{-4}{p} \right)^{1/2} \right) C^* W_p \left(\left(\begin{array}{cc} p & 0 \\ 0 & 1 \end{array} \right), p^{-1/4} \right)$$

where, $C \in \Gamma_0(4M)$. [refer pg. 41, [4]] Hence,

$$f|w_p = \sum_{n>1} \left(\frac{(-1)^k n}{p} \right) a_f(n) e^{2\pi i n \tau} + \lambda f|W_p \left(\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}, p^{-1/4} \right).$$

Let $f|w_p = \lambda_p f$.

Substituting this in the above we get,

$$\lambda_p f = \sum_{n>1} \left(\frac{(-1)^k n}{p} \right) a_f(n) e^{2\pi i n \tau} + \lambda f | W_p \left(\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}, p^{-1/4} \right).$$

Comparing the n^{th} Fourier coefficients on both sides where $p \nmid N$, we get

$$\lambda_p a_f(n) = \left(\frac{(-1)^k n}{p}\right) a_f(n), \quad p \nmid N.$$

Since $p \nmid n$ and $f|W_p$ is invariant under $\left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, 1\right)$ the second term

 $\lambda f|W_p\left(\begin{pmatrix}p&0\\0&1\end{pmatrix},p^{-1/4}\right)$ has zero as its n^{th} Fourier coefficient whenever (n,p)=1. Hence, if we select n such that $a_f(n)\neq 0$ with (n,p)=1 we get,

$$\lambda_p = \left(\frac{(-1)^k n}{p}\right).$$

If (D, p) = 1, set $(-1)^k D = n > 0$, then the eigenvalue is $\left(\frac{D}{p}\right)$.

If f is a newform as above in $S_{k+1/2}^+(4N)$, then, we have the following theorem.

Theorem 4.2. We normalise f by letting $a_f(n)$ to be real and algebraic.

Proof. Let us consider for a prime p the k_p operator studied by Serre and Stark [10] which maps $\sum_{n\geq 1} a_f(n)e^{2\pi in\tau}$ into $\sum_{n\geq 1} \overline{a_f(n)}e^{2\pi in\tau}$. In that, they proved that k_p maps

 $S_{k+1/2}(4N)$ to $S_{k+1/2}(4N)$. But, using the definition of plus space they concluded that, it also maps

$$S_{k+1/2}^+(4N) \mapsto S_{k+1/2}^+(4N)$$

Moreover, it commutes with T_{p^2} and U_{p^2} . Hence, $f|k_p$ and f have same eigenvalues under all the Hecke operators. The multiplicity one result (proved in [4]) shows that $f|k_p = \lambda f$. Since, k_p^2 equals the identity on $S_{k+1/2}^+(4N)$, $\lambda = \pm 1$. Therefore, we take either f or if and we assume that Fourier coefficients are all real.

Thus, we let $f \in S_{k+1/2}^+(4N)$ to be a Hecke eigenform whose Fourier coefficients are all real. In order to prove that they are all algebraic we use the following two results.

If D is a fundamental discriminant with $(-1)^k D > 0$ and $n \ge 1$ we have

$$a_f(|D|n^2) = a_f(|D|) \sum_{d|n} \mu(d) d^{k-1} \left(\frac{D}{d}\right) a_F(n/d).$$

If ν_N denotes the number of different prime divisors of N, then we have

$$\frac{a_f(|D|)^2}{\langle f, f \rangle} = \frac{2^{\nu_N}(k-1)!}{\pi^k} |D|^{k-1/2} \frac{L(F, D, k)}{\langle F, F \rangle}$$

Due to these two results it is enough to prove the algebraic nature for $a_f(|D|)$ whenever D is a fundamental discriminant with $(-1)^k D > 0$. The above formula due to Waldspurger is the same for both f and -if. Using the result of [5]

$$|D|^{-1/2}\pi^{-k}\frac{L(F,D,k)}{\omega_{(-1)^{k-1}}}$$

is algebraic and real and using $\langle F, F \rangle = \omega_{(-1)^{k-1}}\omega_{(-1)^k}$, which is a product of two positive real constants and selecting f such that $\langle f, f \rangle = \omega_{(-1)^k}$, we get $a_f(|D|)^2$ is real, positive and algebraic. This proves that $a_f(|D|)$ is real and algebraic.

Thus, we have the following:

Theorem 4.3. If f is in the old class and f is the Hecke eigenform and eigenform under all W operators then, $a_f(n)$ are real and algebraic.

Proof. Let $g \in S_{k+1/2}^{new}(4M)$, (M|N) be a non-zero Hecke eigenform.

Let f be an eigenform in the space $S_{k+1/2}^{+,old}(4N)$ and generated by a newform $g \in S_{k+1/2}^{+,new}(4M)$, M|N, under all W- operators w_p , (p|N), where M is a proper divisor of N. Thus, using g is an Hecke eigenform under all Hecke operators we

conclude that $a_g(n)$ are algebraic and real. Moreover, its eigenvalue under the W operator for a prime p|N is $\left(\frac{D}{p}\right)$. We write

$$f = g \left| \left(\sum_{d|N/M} \left(\frac{D}{d} \right) w_d \right),\right.$$

We see that f is an eigenform under all w- operators w_p , p|N and f is an eigenform under all Hecke operators T_{p^2} , $(p \nmid M)$. Also, by using

$$p^{k-1}g|w_p = g|T_{p^2} - g|U_{p^2}$$

which was derived in [6] such that $p \nmid M$ and $p \mid \frac{N}{M}$ and from the fact that the Fourier coefficients of g are real and algebraic, the result is immediate by the Lemma.

References

- [1] Eichler, M., Zagier, D, The theory of Jacobi forms, Boston, Birkhauser, 1985
- [2] Koblitz, Introduction to elliptic curves and modular forms (Graduate Texts in Mathematics), 1993.
- [3] Kohnen, W., Modular forms of half-integral weight on $\Gamma_0(4)$, Mathematics Annalen, 248 (1980), 249-266.
- [4] Kohnen, W. Newforms of half-integral weight, J. Reine Angew. Math. 333 (1982), 32–72. MR 84b:10038 Zbl 0475.10
- [5] Kohnen, W., Fourier coefficients of modular forms of half- integral weight, Math. Ann. 271 (1985), 237-268.
- [6] Manickam, M., Ramakrisshnan, B., On Shimura, Shintani and Eichler-Zagier correspondences, Transaction of the American Mathematical Society, 352 (2000), 2601-2617.
- [7] Manickam, M., Ramakrisshnan, B., Vasudevan, T. C., Diagonalising modular forms of half-integral weight, J. Number Theory, 40 (1992), 32-37.
- [8] Miyake, T., Modular forms, Springer Verlag, Berlin Heidelberg, 1989.
- [9] Serre, J. P., Stark, H. M., Modular forms of weight 1/2, modular functions of one variable VI, Lecture notes in mathematics, 627 (1977), 27-67.